arXiv:2008.07871v2 [g-fin.CP] 25 Aug 2020

Fast Agent-Based Simulation Framework of Limit Order Books with
Applications to Pro-Rata Markets and the Study of Latency Effects

Peter Belcak, Jan-Peter Calliess and Stefan Zohren
Oxford-Man Institute of Quantitative Finance
University of Oxford, UK

Abstract

We introduce a new software toolbox, called Multi-
Agent eXchange Environment (MAXE), for agent-
based simulation of limit order books. Offering both
efficient C++ implementations and Python APIs, it al-
lows the user to simulate large-scale agent-based mar-
ket models while providing user-friendliness for rapid
prototyping. Furthermore, it benefits from a versatile
message-driven architecture that offers the flexibility
to simulate a range of different (easily customisable)
market rules and to study the effect of auxiliary fac-
tors, such as delays, on the market dynamics.

Showcasing its utility for research, we employ our sim-
ulator to investigate the influence the choice of the
matching algorithm has on the behaviour of artificial
trader agents in a zero-intelligence model. In addition,
we investigate the role of the order processing delay in
normal trading on an exchange and in the scenario of a
significant price change. Our results include the find-
ings that (i) the variance of the bid-ask spread exhibits
a behavior similar to resonance of a damped harmonic
oscillator with respect to the processing delay and that
(ii) the delay markedly affects the impact a large trade
has on the limit order book.

1 Motivation

Complementing the classical methods of statistical
analysis and mathematical modelling, agent-based
modelling (ABM) of financial markets has recently
been gaining traction [11, 9, 6, 3]. In particular, ap-
plications of this paradigm to market microstructure
[1] have attracted increasing attention. To name but
a few, they include the study of statistical properties
of limit order books [2], (non-)strategic behavior of a
collective of traders [7] when modelled via the flow of
their orders, as well as research into market bubbles
and crashes [12]. With the ever-increasing importance
of automated trading in finance and the rising popu-
larity of artificial intelligence in academic and indus-
trial research, the importance of the ABM approach in
the study of electronic markets is likely to grow fur-
ther.

The diversity of use cases of ABM in finance and eco-
nomics is reflected by the recent proliferation of a va-
riety of software tools tailored to the particularities
of their respective applications, as can be seen in the
aforementioned sources. What is missing is an efficient
code base implementing a general, all-encompassing
multi-agent exchange framework that can be easily
adapted to simulate scalable ABMs based on any par-
ticular exchange as a special case. Among many other
conceivable use cases, such a software environment
could serve as a flexible toolbox allowing its users to
investigate a range of research questions. Such could
include, but are not limited to, the following:

e The impact of different matching algorithms on
the (learned) behaviour and revenues of (adaptive)
trader agents inhabiting a given limit order book
(LOB);

e The amount of strategic decision making required
to explain some of the important statistical prop-
erties of these LOBs;

e The response of strategic trader agent behavior to
a change in the rules of the order matching, as
well as to changing infrastructural effects such as
communication delays.

e Conversely, the impact of different learning behav-
iors of the trading agents on the ensuing market
dynamics.

To address the need for such a toolbox, we introduce a
Multi-Agent eXchange Environment (MAXE), a gen-
eral code environment for the simulation of agent-based
models of electronic exchanges and other financial mar-
kets. For the sake of generality, its architecture is based
around a generic messaging interface that can be in-
stantiated to reflect the rules and protocols of a wide
range of existing exchanges. For convenience, MAXE
also provides a Python API to facilitate rapid prototyp-
ing of artificial agents. However, since the meaningful-
ness of ABMs often rests on the capability to simulate
large multi-agent populations of market participants,
the core of the implementation was written in C++,
with an eye for computational and memory efficiency,
as well as for support of native multi-threading. To
support model calibration as well as studies of agent

behavior on historical market data, our toolbox also in-
tegrates market replay capabilities, in addition to sup-
port of pure ABM systems.

The remainder of this paper is structured as follows:
After placing our toolbox into the context of previ-
ous, related simulator packages in Sec. 2, Sec. 3 pro-
ceeds with introducing the architecture of MAXE. We
present different use cases of our framework. Sec. 4
illustrates an application of our simulation toolbox to
agent-based modelling of pro-rata markets. Sec. 5 con-
tains an illustration of a simple study of the effects
of communication delays. Concluding remarks can be
found in Sec. 6.

2 Related Work

Beyond simple market replay approaches, there still is
a need for publicly available ABM software sufficiently
generic to be capable of simulating the markets at scale.
Our toolbox was designed to meet this demand. The
most closely related toolboxes we are aware of include
Adaptive Modeler [5], Swarm [17], and ABIDES [4]. In
what is to follow, we briefly summarise the features of
these packages in relation to ours.

Adaptive Modeler [5] is a “freemium” specialized mar-
ket simulator first released in 2003 and still maintained.
At the core of the software is a virtual market featur-
ing a predefined set of classes of agents that may be
further adjusted by the user by changing various pa-
rameters such as the population sizes, agent wealth, or
class mutation probability. Once an environment con-
sisting of traders and traded assets is specified, the user
may start the simulation whilst keeping track of out-
puts such as the event log, quotes, or various economic
statistics. All of these functionalities are — or can eas-
ily be — implemented in MAXE as well. In addition
however, MAXE also allows the creation of completely
customised agents with arbitrary behavior and simu-
late them on an arbitrary timescale, as the unit time
step is not bound to any physical measure of time and
can thus be chosen to represent an arbitrarily small
fraction of a second.

Swarm [17] is an open-source ABM package for sim-
ulating the interaction of agents and their emergent
collective behaviour. First released in 1999, it remains
maintained today. Whilst not directly designed for fi-
nancial modelling, it has been used to create the Santa
Fe Artificial Stock Market [13] that, for the first time,
reproduced a number of stylized facts about the be-
haviour of traders and further emphasized the impor-
tance of modelling of financial markets. Unlike swarm,
MAXE comes with an incorporated time-tracking unit
that takes care of the delivery of messages between
the agents involved and the advancement of simulation
time. This allows for a transparent unified channel of
inter-agent communication, enabling simple scheduling

of agent tasks (as outlined in an example in Fig. 1)
and greatly simplifying output generation and debug-

ging.

ABIDES [4] is the newest open source market mod-
elling tool. Released as recently as 2019, it was specif-
ically designed for LOB simulation. Aimed to closely
resemble NASDAQ by implementing the NASDAQ
ITCH and OUCH messaging protocols it hopes to offer
itself as a tool for facilitation of Al research on the ex-
change. Just as MAXE, ABIDES and allows users to
implement their own agents in Python. However, since
MAXE also allows specification in C++ we expect that
MAXE has an edge in terms of the execution efficiency
and scalability. Moreover, MAXE, being based on a
compiled binary core interacting directly with the op-
erating system allows for multi-threaded execution of
simulations, which becomes an advantage when sim-
ulating a range of similar simulations differing only
in a number of input parameters. Apart from that,
MAXE comes with the implicit support for the trad-
ing at multiple exchanges at once and for limit order
books matched with different matching algorithms, in
particular pro-rata matching. MAXE is also highly
modular due to the option to develop a database of
agents first, and then configure a set of simulations via
an XML configuration file.

3 Architecture

MAXE is based on a message-driven, incremental pro-
tocol. Its core logic steps forward time and delivers
messages. As such, it could also be utilised for mod-
elling many multi-agent systems — not just financial ex-
changes. However, our focus throughout this document
remains on applications to exchange trading.

Every relevant entity of a trading system one would
wish to model (e.g. exchanges, traders, news outlets
or social media) can be implemented as an agent. This
is different to the usual approach to agent-based mod-
elling of exchanges where at the centre of the simula-
tion is the exchange concerned and the communication
protocol between the entities of the trading system is
made to resemble the one of the real exchange, often
to ease the transition of any models developed there
into production environments. As it is the case with
any common implementation of message-driven frame-
works, agents taking part in the simulation remain dor-
mant at any point in simulation time unless they have
been delivered a message. When a message is due to
be delivered, the simulation time freezes as all agents
that have been delivered at least one message begin
to take turns to deal with their inbox. Each agent is
given an unlimited amount of execution time to pro-
cess the messages they have been delivered and to send
messages on their own. Messages can be dispatched ei-
ther immediately (i.e. with zero delay) or scheduled

InvestmentAgent ExchangeAgent

EVENT_SIMULATION_START

Loop

[Execution]

LWAKEUP_FOR_QUOTE

-
| RETRIEVE_L1
[

| RESPONSE_RETRIEVE_L1

|
!
r
|
|
|
|
|
|
|
|
|
AN
| Trading Decision Logic
|
|
|
|
|
|
|
|
|
|
[

Yy

[Trading]
PLACE_ORDER_LIMIT

RESPONSE_PLACE_ORDER_LIMIT

EVENT_SIMULATION_STOP

InvestmentAgent ExchangeAgent

Figure 1: A sequence diagram of an example commu-
nication between a trading agent, exchange agent, and
the simulation environment.

to be delivered later in the future by specifying a non-
negative delay which can be used to model latency for
example.

At the beginning of a simulation, each agent is deliv-
ered a message that allows them to take initial actions
and possibly schedule a wake-up in the future by ad-
dressing a message to themselves. At the end of the
simulation, a message of similar nature is sent out to
all agents to allow them to process and save any data
they might have been gathering up to that point for
further analysis outside the simulation environment.
Fig. 1 shows an example communication of an agent
that trades based on regular L1 quote data from the
exchange.

Aside from its core, MAXE also contains a small ini-
tial repository of common agents that can be expanded
upon by its users. This initial repository includes an
exchange agent that can operate a number of different
matching mechanism, as well as a collection of zero-
intelligence and other simple agents. An overview of
the top level of the hierarchy of available agents is de-
picted in Fig. 2. Further details on the various agents
can be found in the code repository [14].

For simplicity and in order to facilitate convenient pro-
totyping of trading system models, MAXE has been
built with an interactive console interface and designed
to read the simulation configurations from a hand-
editable XML file. Once a simulation is running, it
is up to the user to record any information of inter-
est, although a few agents have been supplied to allow

for monitoring of the most common events and statis-
tics. Furthermore, despite the overall emphasis on the
performance of the simulator, MAXE comes with a
Python interface, further allowing for fast prototyping
and the use of common scientific packages available in
that language.

4 Pro-rata over-offering as a result of
naive learning

Different exchanges employ different matching rules.
One of the most popular matching logic is price-time
priority which has been intensively studied (see e.g.
[1]). Another important matching logic is pro-rata (see
e.g. [8]). In pro-rata markets, at a given price level,
orders are not executed in chronological order as in
price-time priority, but in proportion of their size on
the price level. Previous research into pro-rata markets
[8] showed that traders develop the tendency to over-
offer the volume they are willing to buy or sell in order
to guarantee or speed up the execution of the quantity
they actually intend to trade.

4.1 The Model

To demonstrate the flexibility of our simulator, we
present a naive learning model for traders’ behaviors
and show that the trading agents also develop such
tendency after learning and interacting on an artificial
exchange. These trading agents make zero-intelligence
economic decisions about the price of the asset they
wish to acquire or sell similar to the setting in [7] and
then use an order placement strategy based on the
moving average of order-to-trade volume ratios.

The aforementioned model is implemented as follows:
We introduce an exchange agent, dedicated to manag-
ing a limit order book matched with a pure pro-rata
algorithm [10]. We then add a population of trading
agents (traders), which, for ease of illustration, are ho-
mogeneous and very simple: Each trader places orders
at time points distributed according to a Poisson pro-
cess of rate r,. Fach order is then either immediately
marketable with probability fy,, or non-marketable and
will hence enter the limit order book at B+ AP, where
B denotes the current best price of the resting queue
and AP is uniformly distributed on an interval of fixed
length that is a parameter of the simulation. If the
current order is filled before a new order is scheduled
to arrive (i.e. before the end of its mazimum lifetime
T,n, which is precisely the inter-arrival time of the or-
der arrival Poisson process and is thus exponentially
distributed with the rate r, independently of all other
maximum lifetimes), a new order is immediately dis-
patched. Each trader is only allowed to have one out-
standing order, and, if the current order is not yet filled
at the time another order of the same agent is due to

<<interface>>
IMessageable

Simulation

L1LoggingAgent — —

[TradeLoggingAgent]

—_——— —[OrderLoggingAgent

LoggingAgent

A
0.1

TradingAgent

|
BouchaudAgent |~ - 4 —[AdaptiveOfferingAgent
]

TimeProRataBook] : [PureProRataBook]

FarmerAgent

PriceTimeBook

PriorityProRataBook]

Figure 2: The class diagram of the Simulation-Agent hierarchy of the simulator.

arrive, the remaining volume of the current order is
cancelled. Either of the events, firstly, that the partic-
ular realised maximum lifetime ¢, of the given order
has elapsed or, secondly, that the order has been filled,
marks the end of the actual realised lifetime t, (note
tr € (0,tm]).

For each order they place, agents desire to trade a
fixed volume vy before the end of the order’s maxi-
mum lifetime. The maximum lifetime (or, indirectly,
rp) then represents the maximum permitted simulation
time within which the agent tries to trade vy. It can be
interpreted as the urgency of the need to trade vg. Due
to the nature of pro-rata matching, only a fraction of
the outstanding order might be filled before the time
is up, and hence the agent will instead place an order
of volume Vogered-

The trader thus interacts with the environment of the
market by placing its orders, of which there is exactly
one active at a time, and cancelling them if they remain
unfilled for what it deems is “too long”. As mentioned
above, the time of order placement, the type of the
order (i.e. whether it is a market order or a not imme-
diately marketable limit order), the price at which the
order is placed by the trader, and the order maximum
lifetime (i.e. the sense of what is “too long”) are all
determined at random.

Thus, the actions (in game-theoretic sense) of the
agents are the choices of quantities vofered, and the
objective of the agent is to learn to offer the quantity
Voftered SUch that the quantity executed in T;, units is
as close to vg as possible.

Hence the essence of its learning can be characterized
by defining its history of observations to be the record
of fractions of order volumes executed and the respec-
tive realised lifetimes of the respective orders as a func-
tion of tick distance at which the order was placed

Fan(Ap).

Suppose that an order is being placed and its volume
Voftered Needs to be decided. Let Ap be the particular
randomly generated tick distance and let n = n(Ap) >
0 be the number of limit orders previously placed at the
tick distance Ap from the best price at the time they

were being placed. Then the agent needs to choose the

(Ap,n+1

action v;g. g) and Fgn(Ap) is simply

(Ap,1) (Ap,1)

fill r

f(iﬁpi) (Ap:2)
Frn(Ap) :=)

(Ap,n)

(Apin)
fill tr

where tSAp)

and

is the realised lifetime of the order (Ap, n)

o (8P:)
executed
(Ap,i) -~
offered

(Apyi)
fill T

Here véﬁi’éged is the volume of order (Ap,i) that was

executed during its realised lifetime in the book and
ol&P%) s the volume that was placed into the book.
The action of the agent is vofereq and the policy given

the history of observations is

n

(Ap,k) ,(Ap,k
Z ffuf t{AP-k)

k=(n—K)A1l
Voffered = r
Z tg’AP;k)
k=(n—K)A1

where A denotes the minimum of the values on either
side and K the size of the window for the moving av-
erage.

4.2 The Findings

Every run of the simulation lasted for 10*r,, time units
and the simulation was run 100 times. At the end of
each simulation, we recorded the final vogereq for each
agent. If for some values of Ap there had been no or-
ders placed by the agent, we did not record anything.
We show the mean over-offering tendency (computed
as the mean of recorded values and expressed as the
multiple of vy to be offered with the intention of filling
vo within the order lifetime) in Fig. 3. In the sense
of order flow into the exchange, increasing the number
of agents in the simulation environment simply corre-
sponds to increasing the order arrival rate, and since
we give this example for demonstration purposes only,
we settled for an agent population of 100 and treated
it as a constant.

Using this model, we aimed to confirm the over-offering
characteristic for pro-rata-matched LOBs reported by
[16], demonstrating that:

(i) a significant proportion of orders of any lots would
end up being cancelled before being fully filled,

(ii) traders would have the tendency to over-offer, with
the tendency increasing with increasing values of
Ap in a positive neighborhood of 0.

We stress that our main purpose was to demonstrate
the flexibility of MAXE in a simple case study rather
than to venture into a rigorous study of trader over-
offering in pro-rata markets.

100
80x
60

40x
20x

10
8x
6

4x

2

Over-offering tendency as a multiple of intended unit

1=
1 2 3 4 5

Tick distance from the respective best price

Figure 3: The over-offering tendency of the naive learn-
ing agents in the set-up given.

The fraction of all orders placed by agents in our model
that ended up being cancelled by the agents that placed
them before they were filled varied between 80 and
95%, suggesting a result similar to the one in [8]. The
mean over-offering tendency also seems to have var-
ied with the tick distance of the order placement price
from the respective best price as depicted in Fig. 3,

which is consistent with the intuition. Further naive
experimentation with the relevant parameters hinted
that the mean over-offering tendency might be inde-
pendent of the size of the window for the moving av-
erage (K), of the mean maximal order lifetime (i),
and the proportion of marketable orders entering the
exchange (fim,).

5 The role of processing delay

To demonstrate MAXE’s ability to simulate some as-
pects of “market physics”, we utilised it to examine
the effect processing or communication delays have on
various statistics of the market dynamics following a
large trade.

5.1 The Model

The core of the model consists of one exchange agent
with a modifiable choice of matching algorithm and a
population of zero-intelligence trading agents interact-
ing with the exchange. The exchange agent maintains
the limit order book and executes orders submitted by
the trading agents. At the beginning of the simula-
tion, the LOB contains two small orders, one on each
side of the book with the initial bid-ask spread Sy, to
serve as the indicators of the opening prices for further
trading.

Following the start of the simulation, traders place or-
ders and are given a fixed period of time to reconstruct
the LOB to match the empirical average shape from [2]
by placing orders in a manner described below. In the
simulation runs focused on statistics not related to the
study of impactful trades, the remaining time is used to
measure those. The other type of simulations experi-
ences an impact agent entering the exchange and mak-
ing an impactful trade, following which more statistics
are computed. The simulation runs over a fixed time
horizon of 40000¢,,, chosen by experimentation focused
on the setup appearing to have dealt with the largest
of the trades used in our experiment.

The behaviour of our trading agent is similar to the be-
haviour presented in [2] that has been previously shown
to be able to reconstruct the LOB’s shape to be resem-
bling the one of real LOBs of highly liquid stocks on the
Paris Bourse. The behavior presented in [2] is further
adjusted by some features of the behaviour presented in
[7], which has been shown to be able to explain some
of the dynamic properties of the LOB, including the
variance of the bid-ask spread. For a detailed specifi-
cation of the agents’ behaviour we refer the reader to
[14].

According to the L1 information available to the trader
at the time it is making the decision (which may be
outdated due to the communication delay between the

350 A

MO fraction MO fraction 10° 3 MO fraction

25 —— (.05 300 —— (.05 —— 0.05
- 0.1 @ 0.1 0.1
g 20 1 — 015 & 2507 — 015 g — 015
=h T T 107 5 .
w - 0.2 > 200 4 - 02 = 3 - 02
"3 m 4
B 15 & 2
P a w
2 § 150 4 2
c 10 e E'
g @ 100 ¢ 10! 4
E =] =] 7

- o
5 50
0 04 —
T T T T T T T T 10° T T T
1] 20 40 60 1] 20 40 60 1] 20 40 60
delay delay delay
(a) (b) (c)

Figure 4: Statistics of the simulation L1 data plotted against d (in multiples of ¢,) for different values of fy,.

trader and the exchange), each trader places both mar-
ket and not immediately marketable limit orders ac-
cording to a Poisson process with rate r,, with the
fraction of the market orders f,, being a parameter of
the simulation. The simulation was run for values of
fm ranging from 5 to 20%.

Each order has lifetime distributed according to the
exponential distribution with mean ¢, that was a pa-
rameter of the simulation. The simulation was run for
values of ¢ from 200- to 3200-times ¢, = . Thus, the
stream of the cancellation orders can be thought of as
a marked Poisson process with rate r. = i and where
the marking probability is inversely proportional to the
number of orders in the LOB. The price of the order is
drawn from the empirical power-law distribution rela-

tive to the best price at the time of observation.

We define the processing delay d, or simply delay to be
the duration between the time the information about
the state of the limit order book is produced for trading
agents and the time when the exchange processes the
agent’s order against the LOB. This time includes the
two-way latency between the agent and the exchange,
the time it takes the exchange to process the queue of
incoming orders, and decision time on the trader’s side.
Furthermore, taking the zero-intelligence approach to
model the trading and the limit order book as a whole,
the processing delay can also be thought of as encap-
sulating the time it takes the trader to decide whether
and how to trade and possibly evaluating their strategy
given the information becoming available during that
time, and we we shall use this fact when interpreting
our findings.

We also define greed g to be the size of a large market
order expressed as a fraction of the total volume (i.e.,
considering the volume of all price levels) in the queue
it is meant to be executed against.

5.2 Findings

When simulating, we treated the placement frequency
rp as fixed and looked at the effects of the other two
time-based parameters, r. and d, relative to it. The
observed effects turned out to be independent of the
matching algorithm used. Perhaps somewhat more
surprisingly, the cancellation rate r. appeared not to
have had any effect on the statistics considered (see
below).

Notation: If @ is the quantity we are observing,
let e[@] denote the empirical simulation-time-weighted
mean of @ and v[Q] the empirical simulation-time-
weighted variance of Q.

Bid-ask spread

We found that the mean bid-ask spread e[S] increased
linearly with the fraction of market orders fy, (with
a hint of convexity), decreased with d, and appeared
to converge to the bid-ask spread of the initial setup
Sy, coming within a few ticks distance of Sy for all
sufficiently large delays d. The relationship between
the parameters involved is depicted in Fig. 4a and fitted
(R? = 0.90)

e[S] & So + so fme 1%

This was in approximate agreement with the relation-
ship for e[S] as a function of fi, provided in [7] which
considers the price-time matching logic.

The variance of the spread v[S] gave an appearance
qualitatively resembling the amplitude of oscillations of
a simple driven damped oscillator with respect to the
processing delay (d being the frequency in this analogy,
see Fig. 4b), with the resonance delay dy constant with
respect to all free parameters of the simulation.

160 4 greed greed greed
—— 015 —— 04 120 4 —— 015 —— 04 80 - —— 015 —— 04
1407 03 — 045 03 —— 045 & 0.3 —a— 045
120 - 100 7 E
_E _ - 60 -
£ 100 Nl £
S E 804 2
5 80 2 o
L] £ = 40
E 60 =2
60 I
m
o
40 A 40 E 59 4
N \ "A’_'\
20
0 T T T T T T T T T T T T
0 20 40 60 0 20 40 60 0 20 40 60
delay delay delay
(a) (b) (c)

Figure 5: Absolute mean climb, mean fall, and mean long-term impact (in price ticks) plotted against the
processing delay d (in multiples of ¢,) for fixed values of f,, and varying values of greed g.

post-impact price

pre-impact price fall overreaction settlement

Figure 6: Shown is the shape of the average best price
evolution after suffering a large aggressing trade.

Variance of the best price

The time-weighted variance of the best bid and ask
prices (simply the “best” price B(t) at time ¢ as the
behavior is the same for both sides of the queue, see
Fig. 4c) appeared to monotonously decrease with in-
creasing d and, to increase exponentially with increas-
ing fi,, coming to a negligible distance from 0 for suf-
ficiently large values of the delay d.

Shape of the average impact scenario

Turning our attention to the scenario of an impactful
trade occurring at time t1, we define the climb C' to be
the immediate increase in the best price B following a
large (10-100x the size of average market order) trade
against the respective order queue. We further define F’
to be the difference between the highest and the lowest
point the best price attains after ¢1, and I to be the long
term impact of the trade, i.e. the difference between the
equilibrium best price prior to the impactful trade and
the equilibrium price to which the best price “settles”
long after t;. We expressed the volume of the large
trade considered as a fraction of the volume available
on the respective order queue at the time the trade is

executed and denote it by g.

We have found empirically that, irrespective of the vol-
ume of the large trade affecting the best price, e[B](t)
seemed to exhibit the same feature of going through the
phases of fall, overreaction, and settlement (see Fig. 6).
The climb in the best price itself occurred almost in-
stantly after ¢; in the vast majority of cases, with the
exception when a delayed limit order unaware of the
sudden price movement significantly improved the new
best price but was quickly eliminated by newly incom-
ing marketable orders. The first phase, fall, exhibited a
steep best price fall towards the future equilibrium and
its steepness decreased with increasing latency d. The
fall was succeeded by something that could described
as an overreaction, a phase during which the best price
dived further below the future equilibrium price and hit
the absolute minimum at the time at which the bid-ask
spread was also minimal. The best bid and ask prices
then diverged again towards their new equilibrium in
the settlement phase.

The identification of such patterns has the potential of
being of practical utility. They might endow us with
a method for predicting the price at which the best
price will settle after a large trade given the informa-
tion about the long-term variance of and current infor-
mation about the values of the bid-ask spread.

The large trade scenario

We observed that both e[C] and e[F]| decreased linearly
for large delays and small delays with small values of
g (Fig. 5a and Fig. 5b). In addition, large values of g
seemed to allow the climb and fall to peak at a specific
small delay.

The long-term impact appeared to be mostly linear
with d with the downwards slope decreasing with the
increasing values of greed, increases linearly with f,
(Fig. 5¢). Furthermore, it did not seem to exhibit the

same peak as climb and fall do, demonstrating that
these two compensated for each other in the long run.
Furthermore, the logarithm of the long term impact in-
creased proportionally to the volume traded, in keeping
with the results presented in [15].

We shall say that the best price has reached stability if
the moving average with a fixed window of size w falls

within the distance of 4/ %.

Whilst we found significant evidence that the impact
of a large trade on the best price depends on the greed
parameters, perhaps surprisingly, the mean and vari-
ance of the time did not seem to exhibit any notable
dependence on the level of greed, i.e. the best price ap-
pears to converge to stability in time independent of
the size of the large trade nor the share of the mar-
ketable orders fy, (Fig. 7b).

Further evidence of such behavior was found when pro-
ducing the results depicted in Fig. 7c. Here, we looked
at the proportion of the runs of the simulation in which
the price fulfilled the post-impact stability criterion
given above before the simulation was terminated. As
can be seen from the plot, simulation runs for higher
values of the parameter f,, would see the price suc-
ceed to become stabilised in the time horizon of the
simulation more often than for the lower values, but
the greed parameter had again little to no effect on the
proportion of the runs that would become stabilised
for varying values of d. This is further supported by
setting a time limit on convergence in the distant fu-
ture from the impactful trade and measuring the con-
vergence success rate, defined as the proportion of the
simulation runs that succeeded in converging before
that time (see Fig. 7c).

6 Conclusions

We have introduced a new multi-agent simulation
framework for finanical market microstructure, called
the Multi-Agent eXchange Environment (MAXE).
There are a number of distinctive advantages MAXE
offers over alternative simulation frameworks such as
ABIDES [4]. Most notably our framework is fast and
flexible; it allows to model different matching rules and
can model latency.

We have also demonstrated its potency for research
into market dynamics. In particular, we used MAXE
to conduct a simple empirical study highlighting an
over-offering characteristic in pro-rata markets ensuing
from agents that adapt their strategies with a simple
moving-average learning approach. Furthermore, we
utilised MAXE to showcase a mini study of the im-
pact the delay in processing order has on a few LOB
statistics and on the behaviour of the best prices after
a large trade is registered with the exchange.

In conclusion, MAXE offers a general and efficient sim-
ulation environment that can be easily employed for re-
search into properties of various markets or as a bench-
mark environment for agent-based testing of trading
strategies.

Expanding on our illustrative case studies would be in-
teresting in particular, given the dearth of studies util-
ising ABM in the context of pro-rata matching rules.
We hope such research would be greatly aided by our
MAXE package, providing a standardised, scalable and
easily customisable toolbox to support this kind of re-
search.

7 Access and Documentation

The simulator is available on GitHub [14] under the
MIT License. Documentation and the QuickStart
Guide can be found on the GitHub pages under the
doc folder.

References

[1] Bouchaud, J.-P., Bonart, J., Donier, J. and Gould,
M. [2018], Trades, quotes and prices: financial
markets under the microscope, Cambridge Univer-
sity Press.

[2] Bouchaud, J.-P., Mézard, M., Potters, M. et al.
[2002], ‘Statistical properties of stock order books:
empirical results and models’, Quantitative fi-
nance 2(4), 251-256.

[3] Buchanan, M. [2009], ‘Meltdown modelling: could
agent-based computer models prevent another fi-
nancial crisis?’, Nature 460(7256), 680-683.

[4] Byrd, D., Hybinette, M. and Balch, T. H. [2019],
‘Abides: Towards high-fidelity market simulation
for ai research’; arXiv:1904.12066 .

[5] Capterra [2019], ‘Adaptive modeler’,
https://www.capterra.com/p/131204/
Adaptive-Modeler/. Accessed: 2019-12-19.

[6] Cont, R. [2007], Volatility clustering in financial
markets: empirical facts and agent-based mod-
els, in ‘Long memory in economics’, Springer,
pp- 289-309.

[7] Farmer, J. D., Gillemot, L., Iori, G., Krishna-
murthy, S., Smith, D. E. and Daniels, M. G.
[2006], ‘A random order placement model of price
formation in the continuous double auction’, The
Economy as an Evolving Complex System 3, 133—
173.

[8] Field, J. and Large, J. [2008], Pro-rata matching
and one-tick futures markets, Technical report,

https://github.com/maxe-team/maxe
https://github.com/maxe-team/maxe/tree/master/doc
https://www.capterra.com/p/131204/Adaptive-Modeler/
https://www.capterra.com/p/131204/Adaptive-Modeler/

1600 A 3500 A

1.0 A

MO fraction

1400 + —— 0.05

3000 +

1200 4 0.8 1 0.1
—— 015
1000 2500 056 - —— 02

mean fist-hit convergence time
mean stability convergence time
stability success convergence rate

800 4
2000 .
600 MO fraction 0.4
MO fraction —— (.05
400 1 —— 015 1500 1 01 02 -
200 1 0175 1000 - —— 015
- — 02 — 02 0.0
T T T T T T T T T T T T
0 20 40 60 0 20 40 60 0 20 40 60
delay delay delay
(a) (b) (c)

Figure 7: Convergence statistics shown against d (as a multiple of ¢,,) for different values of fy,. The time is
also expressed as a multiple of the mean order placement rate 7.

Oxford-Man Institute, University of Oxford. CFS
Working Paper.

[9] Tori, G. and Porter, J. [2012], ‘Agent-based mod-
elling for financial markets’.

[10] Janecek, K. and Kabrhel, M. [2007], ‘Match-
ing algorithms of international exchanges’,
https://pdfs.semanticscholar.org/6d92/
0528fcbal3a25cb7a627b93ae3e7d5789bde8 . pdf.

[11] Luna, F. and Stefansson, B. [2012], Economic
Stmulations in Swarm: Agent-based modelling and
object oriented programming, Vol. 14, Springer
Science & Business Media.

[12] Paddrik, M., Hayes, R., Todd, A., Yang, S., Bel-
ing, P. and Scherer, W. [2012], An agent based
model of the e-mini s&p 500 applied to flash crash
analysis, in ‘2012 IEEE Conference on Compu-
tational Intelligence for Financial Engineering &
Economics (CIFEr)’, IEEE, pp. 1-8.

[13] Palmer, R., Arthur, W. B., Holland, J. H. and
LeBaron, B. [1999], ‘An artificial stock market’,
Artificial Life and Robotics 3(1), 27-31.

[14] Peter Belcak, Jan-Peter Calliess, S. Z. [2020],
‘Maxe github repository’, https://github.com/
maxe-team/maxe. Accessed: 2020-08-17.

[15] Potters, M. and Bouchaud, J.-P. [2003], ‘More sta-
tistical properties of order books and price im-
pact’, Physica A: Statistical Mechanics and its
Applications 324(1-2), 133-140.

[16] Preis, T. [2011], Price-time priority and pro rata
matching in an order book model of financial mar-
kets, in ‘Econophysics of Order-driven Markets’,
Springer, pp. 65-72.

[17] Swarm [n.d.], ‘Swarm main page’, http://www.
swarm.org/wiki/Swarm_main_page. Accessed:
2019-12-19.

 https://pdfs.semanticscholar.org/6d92/0528fc5a3a25cb7a627b93ae3e7d5789bde8. pdf
 https://pdfs.semanticscholar.org/6d92/0528fc5a3a25cb7a627b93ae3e7d5789bde8. pdf
https://github.com/maxe-team/maxe
https://github.com/maxe-team/maxe
http://www.swarm.org/wiki/Swarm_main_page
http://www.swarm.org/wiki/Swarm_main_page

	1 Motivation
	2 Related Work
	3 Architecture
	4 Pro-rata over-offering as a result of naive learning
	4.1 The Model
	4.2 The Findings

	5 The role of processing delay
	5.1 The Model
	5.2 Findings
	5.2.1 Bid-ask spread
	5.2.2 Variance of the best price
	5.2.3 Shape of the average impact scenario
	5.2.4 The large trade scenario

	6 Conclusions
	7 Access and Documentation

