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Abstract

Individuals, or organizations, cooperate with or compete against one another in
a wide range of practical situations. In the economics literature, such strategic
interactions are often modeled as games played on networks, where an individual’s
payoff depends not only on her action but also that of her neighbors. The current
literature has largely focused on analyzing the characteristics of network games
in the scenario where the structure of the network, which is represented by a
graph, is known beforehand. It is often the case, however, that the actions of the
players are readily observable while the underlying interaction network remains
hidden. In this paper, we propose two novel frameworks for learning, from the
observations on individual actions, network games with linear-quadratic payoffs,
and in particular the structure of the interaction network. Our frameworks are based
on the Nash equilibrium of such games and involve solving a joint optimization
problem for the graph structure and the individual marginal benefits. We test the
proposed frameworks in synthetic settings and further study several factors that
affect their learning performance. Moreover, with experiments on three real world
examples, we show that our methods can effectively and more accurately learn the
games than the baselines. The proposed approach is among the first of its kind for
learning quadratic games, and have both theoretical and practical implications for
understanding strategic interactions in a network environment.

1 Introduction

We live in an increasingly connected society. First studied by the American sociologist Stanley
Milgram via his 1960s experiments and later popularized by John Guare’s 1990 eponymous play,
the theory of “six degrees of separation” has been recently re-analyzed on the social networking site
Facebook, only to find out that any pair of Facebook users can actually be connected via approximately
three and a half other ones [1]. Individuals, unsurprisingly, are not merely connected; their decisions
and actions often influence the ones around them. Indeed, Christakis and Fowler [2] have found
in a series of studies that, one’s emotion, health habit, and political opinion can affect individuals
who are as far as three degrees of separation in her social circle. Furthermore, such influence on the
decision-making process may take place via either explicit [3, 4] or implicit interactions [5, 6].

To study the decision-making of a group of interacting agents, recent literature in economics has
increasingly focused on the modeling of such interactions as games played on networks [7, 8]. The
underlying assumption in this setting is that, in a game played by a group of players who form a social
network, the payoff of a player depends on her action, e.g., an effort made to achieve a specific task, as
well as that of her neighbors in the network. Two types of actions have been studied in the literature,
i.e., strategic complements and strategic substitutes. In the former case, players are incentivized
to follow similar actions to maximize their payoffs, e.g., students putting an effort together into a
joint assignment or firms working on a collaborative research project [9]. In the latter case, however,
one’s action reduces her neighbors’ incentives for action, such as the scenarios of firms competing on
market prices or individuals on local public goods [10].
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In a network game, the underlying structure of the network carries critical information and dictates
the behavior and actions of the players. Typically, graphs are used as mathematical tools to represent
the structure of these networks, and the current literature in this area has largely focused on studying
the characteristics of games on known or predefined graphs [11, 12, 13]. However, it is increasingly
common that while ample observations on the actions of the agents are available, the underlying
complex relationships among them, which may be captured by an interaction network, remains mostly
unknown and needs to be estimated to understand the present better and predict the future actions of
these agents. The primary goal of this paper is therefore to study the problem of learning, given the
observations on the actions of the agents, a graph structure that best explains the observed actions in
the setting of a network game.

Such a problem, generally speaking, may be thought of as an instance of the ones of learning
relationships, often in the form of graph structures, from observations made on a set of data entities.
Classical approaches from the machine learning and signal processing communities tackle this
problem by building statistical models (e.g., probabilistic graphical models [14, 15]), physically-
motivated models (e.g., diffusion processes on networks [16, 17], or more recently signal processing
models [18, 19]. These approaches, however, do not take into account the game-theoretic aspect of
the decision-making of players in a network environment.

In the computer science literature, network games are known as graphical games [20] and there has
been a few studies recently proposing to learn the games from observed action data. For example,
the works in [21, 22, 23] have proposed to learn graphical games by observing actions from linear
influence games with linear influence functions, where the authors of [24] has considered polymatrix
games with pairwise matrix payoff functions. The work in [25] has proposed to learn potential
games on tree-structured networks of symmetric interactions. These conditions have been relaxed
in [26] where the authors have studied aggregative games where a player’s payoff is convex and
Lipschitz in an aggregate of their neighbors’ actions defined via a local aggregator function. All these
works, however, either consider a binary or a finite discrete action (or strategy) space, which may be
restrictive in certain practical scenarios where actions take continuous values.

In this study, we focus on learning quadratic games, i.e., games with linear-quadratic payoffs
[11, 12, 13, 27]. Quadratic games are a broad class of games that have been extensively studied in the
literature, not only because they allow for continuous actions and can be used to model actions of both
strategic complements and substitutes, but also because they can be used to approximate games with
complex non-linear payoffs. We propose a learning framework where, given the Nash equilibrium
actions of the games, we jointly infer the graph structure that represents the interaction network as
well as the individual marginal benefits. We further develop a second framework by considering the
homophilous effect of individual marginal benefits in the interaction network. The first framework
involves solving a convex optimization problem, while the second leads to a non-convex one for
which we develop an algorithm based on alternating minimization. We test the performance of the
proposed algorithms in inferring graph structures for network games and show that it is superior to
the baseline approaches of sample correlation and regularized graphical Lasso [28], albeit developed
for slightly different learning settings.

The main contributions of the paper are as follows. First, the proposed learning frameworks, to the
best of our knowledge, are the first to address the problem of learning the graph structure of network
games with linear-quadratic payoffs. Second, we analyze several factors in the quadratic games that
affect the learning performance, such as the strength of strategic complements or substitutes, the
topological characteristics of the networks, and the homophilous effect of individual marginal benefits.
Third, we carry out three real world experiments, where we show that the proposed frameworks can
infer the underlying social, trading, and political relationships between players under the assumption
of quadratic games. Overall, our paper constitutes a theoretical contribution to the studies of network
games and may shed light on the understanding of strategic interactions in a wide range of practical
scenarios, including business, education, governance, and technology adoption.

2 Network games of linear-quadratic payoffs

Consider a network of N individuals represented by a graph G(V, E), where V and E denote the
vertex and edge sets, respectively. For any pair of individuals i and j, Gij = Gji = 1 if (i, j) ∈ E
and Gij = Gji = 0 otherwise, where Gij is the ij-th entry of the adjacency matrix G. Following
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the literature, in a network game of linear-quadratic payoffs, an individual i chooses her action ai to
maximize her utility, ui, which has the following form [11, 12, 13, 27]:

ui = biai −
1

2
a2i + βai

∑
j∈V

Gijaj . (1)

In Eq. (1), the first term is contributed by i’s own action where the parameter bi is called the marginal
benefit, and the third term comes from the peer effect weighted by the actions of her neighbors. The
parameter β captures the nature and the strength of such peer effect: if β > 0, actions are called
strategic complements; and if β < 0, actions are called strategic substitutes.

Let us define the vectorial forms a = [a1, a2, · · · , aN ]T , b = [b1, b2, · · · , bN ]T , and u =
[u1, u2, · · · , uN ]T , where we use the convention that the subscript i indicates the i-th entry of
the vector. Taking the first-order derivative of the utility ui with respect to the action ai in Eq. (1), we
have:

∂ui
∂ai

= bi − ai + β(Ga)i. (2)

Letting the right hand side of Eq. (2) to be 0, and combining the results for all i, we have:

b− a + βGa = 0. (3)

It is clear from Eq. (3) that the following relationship holds, as pointed out in [11], for any (pure
strategy) Nash equilibrium action a:

(I− βG)a = b, (4)

hence
a = (I− βG)

−1
b, (5)

where I ∈ RN×N is the identity matrix. We adopt the critical assumption that the spectral radius
of the matrix βG, denoted by ρ(βG), is less than 1, which guarantees the inversion of Eq. (5).
Furthermore, as proved in [11], this assumption also ensures the uniqueness and stability of the Nash
equilibrium action a. Notice that the formulation of Eq. (5) can be interpreted as computing steady
state opinions in studying opinion dynamics under a linear DeGroot model [29] and has been used in
works on social network sensing [30].

3 Learning games with independent marginal benefits

Given the graph with an adjacency matrix G, the marginal benefits b, and the parameter β, Eq. (5)
provides a way of computing a, the Nash equilibrium actions of the players. The graph structure,
in many cases, can be naturally chosen from the application domain, such as a social or business
network. However, these natural choices of graphs may not necessarily describe well the strategic
interactions between the players, and a natural graph might not be easy to define at all in some
applications. Compared to the underlying relationships captured by G, it is often easier to observe
the individual actions a, such as the amount of effort committed by students in a joint course project,
or the strategic moves made by firms in a financial market. In these cases, given the actions and the
dependencies described in Eq. (1), it is therefore of considerable interest to infer the structure of the
graph on which the game is played, hence revealing the hidden relationships between the players.

3.1 Problem formulation

In the setting of this paper, we consider N players, connected by a fixed interaction network G,
playing K different games in each of which their payoffs depend not only on their own actions
but also that of their neighbors. Let us define the marginal benefits for these K games as B =
[b(1),b(2), · · · ,b(k)] ∈ RN×K , where each column of B is the marginal benefit vector for one
game, and the corresponding actions of the players as A = [a(1),a(2), · · · ,a(K)] ∈ RN×K . We first
consider in this section the case where, for each game, the marginal benefits of individual players
follow independent Gaussian distributions, and then move to the dependent case in Section 4. In
our setting, the parameter that captures the strength of the network effect, β, can be either positive
or negative, corresponding to strategic complements and strategic substitutes, respectively. Given
the observed actions A and the parameter β, the goal is to infer a graph structure G as well as the
marginal benefits B, which best explain A in terms of the relationship in Eq. (4).
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To this end, we propose the following joint optimization problem of the graph structure G and the
marginal benefits B:

minimize
G,B

f(G,B) = ||(I− βG)A−B||2F + θ1||G||2F + θ2||B||2F ,

subject to Gij = Gji, Gij ≥ 0, Gii = 0 for ∀i, j ∈ V,
||G||1 = N,

(6)

where tr(·), || · ||F , and || · ||1 denote operators that compute the trace, Frobenius norm, and entry-wise
L1-norm of a matrix, respectively, and θ1 and θ2 are two non-negative regularization parameters.
The first line of constraints ensures that G is a valid adjacency matrix, and the second constraint
(the constraint on the L1-norm) fixes the volume of the graph and permits to avoid trivial solutions.
It is clear that, in the problem of Eq. (6), we aim at a joint inference of the graph structure G and
the marginal benefits B, such that the observed actions A are close to the Nash Equilibria of the
K games played on the graph. The Frobenius norm on G is added as a penalty term to control the
distribution of the edge weights of the learned graph (the off-diagonal entries of G)1, which, together
with the L1-norm constraint, bears similarity to the linear combination of L1 and L2 penalties in an
elastic net regularization [33].

3.2 Learning algorithm

Given the non-negativity of Gij , we can re-write the constraint:

||G||1 = 1TG1 = N, (7)

where 1 ∈ RN is the all-one vector. The constraints in Eq. (6) therefore form a convex set. The
problem of Eq. (6) is thus a quadratic program jointly convex in B and G, and can be solved efficiently
via the interior point methods [34]. In our experiments, we solve the problem of Eq. (6) using the
Python software package CVXOPT [35]. In case of graphs of very large number of vertices, we can
instead use operator splitting methods (e.g., alternating direction method of multipliers (ADMM)
[36]) to find a solution. The algorithm is summarized in Algorithm 1.

Algorithm 1 Learning games with independent marginal benefits

1: Input Observed actions A ∈ RN×K for K games, β, θ1, θ2
2: Output Network G ∈ RN×N , marginal benefits B ∈ RN×K for K games
3: Solve for G and B in Eq. (6)
4: return G, B

4 Learning games with homophilous marginal benefits

A large number of studies in the literature of social sciences and economics have analyzed the
phenomenon of homophily in social networks, which describes that individuals tend to associate and
form ties with those that are similar to themselves [37, 38]. Since the marginal benefit vector b can
be thought of as the individual preferences (toward a particular action), they may contribute in the
presence of homophily to the formation of the interaction network on which the game is played. The
second formulation in our paper is therefore to address the problem of learning games with such
homophilous marginal benefits.

4.1 Problem formulation

The effect of homophily present in the marginal benefit vector b may be quantified by the so-called
Laplacian quadratic form on the graph:

Q(b) = bTLb =
1

2

∑
i,j∈V

Gij (bi − bj)2 , (8)

1Similar constraints have been adopted in [31, 32] for graph inference.
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where L = diag(
∑

j∈V Gij)−G is the unnormalized (combinatorial) graph Laplacian matrix [39].
We therefore propose to add this measure in the objective function of the problem of Eq. (6) to
promote homophilous marginal benefits, which essentially assumes that the marginal benefits follow
a multivariate Gaussian distribution. This leads to the following optimization problem:

minimize
G,B

h(G,B) = ||(I− βG)A−B||2F + θ1||G||2F + θ2 tr(BTLB),

subject to Gij = Gji, Gij ≥ 0, Gii = 0 for ∀i, j ∈ V,
||G||1 = N,

L = diag(
∑
j∈V

Gij)−G,

(9)

where the third term in the objective is the sum of the Laplacian quadratic form for all the columns
in B, and the third constraint comes from the definition of the graph Laplacian L. Like in Eq. (6),
θ1 and θ2 are two non-negative regularization parameters. The problem of Eq. (9) is similar to that
of Eq. (6), but with a different assumption that there exists the effect of homophily in the marginal
benefits b, whose strength is controlled by the regularization parameter θ2, i.e., a larger θ2 favors a
stronger homophily effect, and vice versa.

4.2 Learning algorithm

Unlike the problem of Eq. (6), the problem of Eq. (9) is not jointly convex in G and B due to the third
term in the objective function. We therefore adopt an alternating minimization scheme to optimize
for the graph structure G and the marginal benefits B where, at each step, we solve for one variable
while fixing the other.

Given B, we first solve for G in Eq. (9). Let us take a closer look at Eq. (9). The constraint set is
the same as that in Eq. (6), and thus convex. Since θ1 ≥ 0 and θ2 ≥ 0, fixing B and solving for G
results in a strongly convex objective, and consequently the problem admits a unique solution. We
again solve this convex optimization problem using the package CVXOPT.

Next, we fix G and solve for B in Eq. (9). By fixing G, Eq. (9) becomes an unconstrained convex
quadratic program, and thus admits a closed-form solution which can be obtained by setting the
derivative to zero:

∂h(G,B)

∂B
= −2

(
(I− βG)A−B

)
+ 2θ2LB = 0, (10)

hence
B = (I + θ2L)−1(I− βG)A. (11)

We iterative between the two steps until either the change in the objective h(G,B) is smaller than
10−4, or a maximum number of iterations has been reached. This strategy is called block coordinate
descent and, since both subproblems are strongly convex, is guaranteed to converge to a local
minimum (see Proposition 2.7.1 in [40]). The complete algorithm is summarized in Algorithm 2.

Algorithm 2 Learning games with homophilous marginal benefits

1: Input Observed actions A ∈ RN×K for K games, β, θ1, θ2
2: Output Network G ∈ RN×N , marginal benefits B ∈ RN×K for K games
3: Initialize B0 ∼ N (0, I), t = 1, ∆ = 1
4: while ∆ ≥ 10−4 and t ≤ # iterations do
5: Solve for Gt in Eq. (9) given Bt−1
6: Compute Lt using Gt

7: Bt = (I + θ2Lt)
−1(I− βGt)A

8: ∆ = |h(Gt,Bt)− h(Gt−1,Bt−1)| (for t > 1)
9: t = t+ 1

10: return G = Giter,B = Biter.
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5 Experiments on synthetic data

5.1 Experimental setting

In this section, we evaluate the performance of the proposed learning frameworks on synthetic
networks that follow three types of random graph models, i.e., the Erdős–Rényi (ER), the Watts-
Strogatz (WS), and the Barabási-Albert (BA) models. In the ER graph, an edge is created with a
probability of p = 0.2 independently from all other possible edges. In the WS graph, we set the
average degree of the vertices to be k = blog2(N)c, with a probability of p = 0.2 for the random
rewiring process. Finally, in the BA graph, we add m = 1 new vertex at each time by connecting
it to an existing vertex in the graph via preferential attachment. Once the graphs are constructed,
we compute β such that the spectral radius, ρ(βG), varies between 0 and 1 hence satisfying the
assumption in Section 2.

We adopt two different settings, one for generating the independent and the other for the homophilous
marginal benefits b. In the independent case of Section 3, for each game, we generate realizations
by considering b ∼ N (0, I). In the homophilous setting of Section 4, we generate realizations by
considering b ∼ N (0,L†), where L† is the Moore-Penrose pseudoinverse of the groundtruth graph
Laplacian L. In both cases we further add Gaussian noise ε ∼ N (0, 1

10I) to the simulated marginal
benefits. Now, given b and β, we compute the players’ Nash equilibrium actions according to Eq. (5).
We consider K = 50 games for each of which we generate the actions a.

We apply Algorithm 1 and Algorithm 2 to the respective settings to infer graph structures and compare
against the groundtruth ones in a scenario of binary classification, i.e., either there exists an edge
between i and j (positive case), or not (negative case). Since the ratio of positive cases is small
for all the three types of graphs, we use the area under the curve (AUC) for the evaluation of the
learning performance, which is widely adopted in case of classification with imbalanced class labels.
We compare our algorithms with two baseline methods for inferring graph structures given data
observations: the sample correlation and the regularized graphical Lasso in [28]. In the former case
we consider the correlations between each pair of variables as “edge weights” in a learned graph,
while in the latter case a graph adjacency matrix is computed as in our algorithms.

5.2 Comparison of learning performance

The performance of the three methods in comparison is shown in the top row of Fig. 1 for the
case of independent marginal benefits. For Algorithm 1 and regularized graphical Lasso, we report
the results using the parameter values that give the best average performance over 20 randomly
generated graph instances. First, we see that the performance of all the three methods increases
with the spectral radius ρ(βG) for the majority of the cases. This pattern indicates that stronger
strategic dependencies between actions of potential neighbors reveal more information about the
existence of the corresponding links. Indeed, as ρ(βG) increases, the action matrix A contain
more information about the graph structure. Second, the performance of the proposed Algorithm 1
generally outperforms the two baselines in terms of recovering the locations of the edges of the
groundtruth. Notice that for regularized graphical Lasso, the performance drops with larger value
for ρ(βG). One possible explanation is that, as ρ(βG) becomes close to 1, the smallest eigenvalue
of I − βG approaches 0, which may lead to inaccurate estimation of the precision matrix in the
graphical Lasso. In comparison, our method does not seem to be affected by such phenomenon.
Finally, the performance of all the methods for the WS and BA graphs is generally better than that of
the ER graphs, possibly because there exists more structural information in the former models than
the latter.

Next, the same results for the case of homophilous marginal benefits are shown in the bottom row of
Fig. 1. We observe the same increase in performance as ρ(βG) increases for all the three methods, as
well as the drop in performance towards large ρ(βG) for regularized graphical Lasso. The proposed
Algorithm 2 generally achieves superior performance in this scenario, which is unsurprising due to
the way the observations A are generated taking into account the regularization term in the objective
in Eq. (9) that enforces homophily.

Robustness against regularization parameters. We next analyze the robustness of the perfor-
mance of Algorithm 1 against the regularization parameter θ1 in Eq. (6), and the results averaged
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Figure 1: Comparison of learning performance between the proposed algorithm and baselines in
the setting of independent marginal benefits (top row) and homophilous marginal benefits (bottom
row). The red triangle, the middle line, lower and upper boundaries of the box (interquartile range
or IQR) correspond to mean, median, and 25/75 percentile of the data, respectively. The lower and
upper whiskers extend maximally 1.5 times of IQR from 25 percentile downwards and 75 percentile
upwards, respectively.

over 20 random graph instances are presented in Fig. 2. In general, in addition to the effect of ρ(βG)
discussed above, we see a consistent pattern across the three graph models that link the values of
θ1 and θ2 to the learning performance. Specifically, when θ1 is smaller than around 102, there is a
region where a certain ratio of θ1 to θ2 leads to optimal performance, suggesting that in this case, the
second and third terms are the dominating factors in the optimization of Eq. (6). A phase transition
takes place when θ1 is larger than 102, where the performance becomes largely constant. The reason
behind this behavior is as follows. When θ1 increases, the Frobenius norm of G in the objective
function of Eq. (6) tends to be small. Given a fixed entry-wise L1-norm of G, this leads to a more
uniform distribution of the off-diagonal entries. When θ1 is large enough, the edge weights become
almost the same, leading to a constant AUC measure.

Similarly, we present in Fig. 3 the performance of Algorithm 2 with respect to different values of
θ1 and θ2 in Eq. (9). We see that the patterns are generally consistent with that in Fig. 2, with one
noticeable difference being that there also seems to be a phase transition taking place around the
value of 10−1 for θ2. One possible explanation for this behavior is that, when θ2 is large enough,
the trace term in the objective function of Eq. (9) tends to be small, making the resulting graph with
fewer edges but with larger weights. This contributes to an AUC score that is mostly constant.

5.3 Learning performance with respect to different factors in network games

In this section we examine the learning performance of the proposed algorithms with respect to a
number of factors, including the number of games, the noise intensity, the structure of the groundtruth
network, and the strength of the homophily effect in marginal benefits.

Learning performance versus number of games. We are first interested in understanding the
influence of the number of games K on the learning performance. In the following and all subsequent
analyses, we choose ρ(βG) = 0.6, and fix the parameters in Algorithm 1 and Algorithm 2 to be the
ones that lead to the best learning performance in Fig. 2 and Fig. 3, respectively. In Fig. 4, we vary the
number of games and evaluate its effect on the performance. We see that in general, the performance
of both algorithms increase, as more observations become available. The benefit is least obvious for
the ER graph with independent marginal benefits, suggesting that adding more observations does not
help as much in improving the performance in this case when the edges in the graph appear more
randomly.
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Figure 2: Learning performance (in terms of AUC) of Algorithm 1 with respect to ρ(βG), θ1, and θ2.

Figure 3: Learning performance (in terms of AUC) of Algorithm 2 with respect to ρ(βG), θ1, and θ2.

Learning performance versus noise intensity in the marginal benefits. We now analyze the
robustness of the result against noise intensity in the marginal benefits. It is clear that with more noise
in the marginal benefits, the observed actions A becomes noisier as well, hence possibly affecting the
learning performance. As shown in Fig. 5, the learning performance generally decays as the intensity
of noise increases, which is expected for both algorithms. The performance of the model is relatively
stable until the standard deviation of the noise becomes larger than 1.

Learning performance versus network structure. The random graphs used in our experiments
have parameters that may affect the performance of the proposed algorithms. We therefore analyze
the effect of p in the ER, p and k in the WS, and m in the BA graphs on the learning performance
of the two proposed algorithms. As shown in Fig. 6, increasing the randomness of edges in the WS
graph via a higher rewiring probability decreases the performance of learning. This pattern also
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Figure 4: Performance measure versus number of games for Algorithm 1 (top row) and Algorithm 2
(bottom row).

Figure 5: Performance measure versus noise intensity in the marginal benefits for Algorithm 1 (top
row) and Algorithm 2 (bottom row).

explains why the performance on the ER graph (in which edges appear more randomly) is generally
the worst among the three types of networks.

The remaining plots in Figure. 6 show that the density of edges has a substantial effect on the learning
performance for all the networks, i.e., the denser the edges, the worse the performance. One possible
explanation is that, in a sparse network the correlations between individuals’ actions might contain
more accurate information about the existence of dependencies hence edges between them, while in a
dense network the influence from one neighbor is often mingled with that from another, which makes
it more challenging to uncover pairwise dependencies.

Learning performance versus strength of homophily. Finally, we analyze the influence of the
strength of homophily on the learning performance of Algorithm 2. We consider three scenarios,
i.e., weak, medium and strong homophily effect. To this end, we generate the marginal benefits b as
linear combinations of the eigenvectors corresponding to the 1st-5th, 6th-10th, and 11th-15th smallest
eigenvalues of the graph Laplacian matrix. Due to the properties of the eigenvectors, these three sets
lead to different quantities for the Laplacian quadratic form Q(b), hence corresponding to weak,
medium and strong homophily effect, respectively. Notice that the presence of the homophily effect
in B tends to imply homophily in A for the following reason. Regardless of the characteristics of
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Figure 6: Learning performance versus structural properties of the network for Algorithm 1 (top row)
and Algorithm 2 (bottom row).

Figure 7: Learning performance versus strength of homophily in the marginal benefits for Algorithm 2.

the game, a higher marginal benefit b is more likely to incentivize higher activity level a due to the
first term of the utility function in Eq. (1). Therefore, homophily in B tends to lead to homophily
in A, hence revealing more information about the graph structure. As shown in Fig. 7, for all the
three types of networks, the stronger the homophily in the marginal benefits, the better the learning
performance.

5.4 Learning the marginal benefits

In learning quadratic games, we jointly infer the graph structure and the marginal benefits of the
players. This is one of the main advantages of our algorithms, since the inference of marginal benefits
can be critical for targeting strategies and interventions [13]. To this end, for each random graph
model we generate a network with 20 nodes and simulate 50 games with ρ(βG) = 0.6, for both
independent and homophilous marginal benefits. We repeat this process for 30 times, and report the
average performance of learning the marginal benefits in Table 1. The performance is measured in
terms of the coefficients of determination (R2), by treating the groundtruth and learned marginal
benefits (both in vectorized form) as dependent and independent variables, respectively. As we can
see, in both cases the R2 values are above 0.9, which indicates that the learned marginal benefits are
very similar to the groundtrith ones.

Table 1: Performance (in terms of R2) of learning marginal benefits.

Algorithm 1 Algorithm 2
mean std mean std

ER graph 0.959 0.005 0.982 0.002
WS graph 0.955 0.007 0.921 0.010
BA graph 0.937 0.008 0.909 0.010

6 Experiments on real world data

The strategic interactions between players in real world situations may follow the formulation of the
network games. Given this broad assumption, we present three examples of inferring the network
structure in quadratic games, hence demonstrating the effectiveness of the proposed algorithms in
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practical scenarios. Our experiments cover the inference of three real world networks of social
relationship, trading behavior, and political preference.

6.1 Social network

The first example is the inference of the structure of a social network between households in a
village in rural India [41]. In particular, following the setting in [41], we consider the actions of each
household as choosing the number of rooms, beds, and other facilities in their houses. The assumption
is that there may exist strategic interactions between these households regarding constructing such
facilities. In particular, when deciding to adopt new technologies or innovations, people have an
incentive to conform to the social norms they perceive [42, 43], which are formed by the decisions
made by their neighbors. For example, if neighbors adopt a specific facility, villagers tend to gain
higher utility after adopting the same facility by complying with social norms.

We consider each action as a strategy in a quadratic game, and we have in total 31 games with discrete
actions made by 182 households. We then apply the proposed algorithms to infer the relationships
between these households, and compare against a groundtruth network of self-reported friendship.
Since we do not observe β, we treat it as a hyperparameter, and tune it within the range of β ∈ [−3, 3].
It can be seen from Table 2 that both of the proposed methods outperform regularized graphical Lasso
by about 2.5% and sample correlation by about 10.7%2, indicating that they can recover a social
network structure closer to the groundtruth.

Table 2: Performance (in terms of AUC) of learning the structure of the social network and the trade
network.

Social network Trade network
Sample correlation 0.525 0.523
Regularized graphical Lasso 0.564 0.570
Algorithm 1 0.575 0.622
Algorithm 2 0.576 0.677

6.2 Trading relationship

The second example is the inference of the structure of the global trade network. Specifically, we
consider the overall trading activities of 235 countries on 96 export products and 96 import products
in year 2008 as our observed actions3. This leads to 192 games (for both import and export actions)
played by 235 agents (countries). By applying the proposed algorithms, we infer the relationships
among nations regarding their strategic trading decisions and compare against a groundtruth which
is the trading network in year 20024. In constructing the groundtruth, we consider the edge weight
between each pair of nations as the logarithmic of the total amount of trades (import and export)
between the two nations.

The utilities from the demand and supply of a nation depends on that of their neighboring nations.
These neighboring nations are the ones with which a particular nation traded in 2002. On the demand
side, the more demand a nation has, the less utility this nation would gain from trading with a high-
demand nation. On the supply side, the more supply a nation has, the less utility this nation would
obtain by trading with a nation also with high supply. Therefore, we expect a strategic substitute
relationship between the nations.

2The improvement is calculated by the absolute improvement in AUC normalized by the room for improve-
ment. The best performance of Algorithm 1 is obtained with β = 0.1, θ1 = 2−8.5, and θ2 = 21, while that of
Algorithm 2 is obtained with β = 2.6, θ1 = 27, and θ2 = 2−5.5. The positive sign of β in both cases indicates
a strategic complement relationship between the households, which is consistent with our hypothesis.

3Data can be accessed via https://atlas.media.mit.edu/en/resources/data/. The trading activities are classified
by the 2002 edition of the HS (Harmonized System).

4The trading network from previous years provides a foundation for nations to make decisions and thus can
be thought of as a groundtruth. The year 2002 is the latest year before 2008 for which trading data are available.

11



Figure 8: Clustering of Swiss cantons based on the political network learned by Algorithm 1 (left)
and Algorithm 2 (right).

We tune β within the range of β ∈ [−1, 1]. Table 2 shows that Algorithm 1 and Algorithms 2
outperform regularized graphical Lasso by 12.09% and 24.85%, respectively5. The larger performance
gain in this case is due to the fact that the regularized graphical Lasso approach in [28] is suitable
only for strategic complement and not strategic substitute relationships. Furthermore, Algorithm 2
performs better than Algorithm 1 in this example, which implies a homophilous distribution of
marginal benefits across neighboring nations.

6.3 Political preference

The third example is the inference of the relationship between the cantons in Switzerland in terms of
their political preference. To this end, we consider voting statistics from the national referendums
for 37 federal initiatives in Switzerland between 2008 and 20126. Specifically, we consider the
percentage of voters supporting each initiative in the 26 Swiss cantons as the observed actions. This
leads to 37 games (initiatives) played by 26 agents (cantons). By applying the proposed algorithms,
we infer a network that captures the strategic political relationship between these cantons reflected by
their votes in the national referendums7.

Unlike the previous examples, it is more difficult to define a groundtruth network in this case. Instead,
we apply spectral clustering [44] to the learned network and interpret the obtained clusters of cantons.
The three-cluster partition of the networks learned by Algorithm 1 and Algorithm 2 are presented in
Fig. 8(a) and Fig. 8(b), respectively. As we can see, the clusters obtained in the two cases are largely
consistent, with the blue and yellow clusters generally corresponding to the French-speaking and
German-speaking cantons, respectively. The red cluster, in both cases, contains the five cantons of
Uri, Schwyz, Nidwalden, Obwalden and Appenzell Innerrhoden, which are all considered among
the most conservative ones in Switzerland. This demonstrates that the learned networks are able
to capture the strategic dependence between cantons within the same cluster, which tend to vote
similarly in national referendums.

7 Discussion

Extensive research has focused on the understanding of decision-making of individuals in a given
network environment. However, there is a lack of effort in addressing the problem in the opposite
direction, i.e., inferring the underlying interaction graph, especially when one is not readily available,
given strategic decisions of players in a network game. In this paper, we have proposed two novel
learning frameworks for a joint inference of graph structure and individual marginal benefits for a

5The best performance of Algorithm 1 is obtained with β = −0.6, θ1 = 21, and θ2 = 2−10, and that of
Algorithm 2 is obtained with β = −0.7, θ1 = 211.5, and θ2 = 2−15.5. The negative sign of β in both cases
indicates a strategic substitute relationship between the nations, which is consistent with our hypothesis.

6The voting statistics were obtained via http://www.swissvotes.ch.
7We tune β within the range of [−1, 1]. For Algorithm 1 we report results with β = 0.6, θ1 = 2−6.2, and

θ3 = 2−1.65. For Algorithm 2 we report results with β = 0.67, θ1 = 22, and θ2 = 23. The positive sign of β in
both cases indicates a strategic complement relationship between the cantons.
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broad class of network games, i.e., games with linear-quadratic payoffs. Testing our algorithms in
both synthetic and real world settings, we show that they achieve superior performance compared to
the baseline techniques. Furthermore, we study systematically several factors that affect the learning
performance of the proposed algorithms. We believe that the present paper may shed light on the
understanding of network games (in particular those with linear-quadratic payoffs), and contribute to
the vibrant literature of learning hidden relationships from data observations.

The proposed approaches can benefit a wide range of practical scenarios. For instance, the learned
graph, which captures the strategic interactions between the players, may be used for detecting
communities formed by the players [45], which can, in turn, be used for purposes such as stratification.
Another use case is to compute centrality measures of the nodes in the network, which may help
in designing efficient targeting strategies in marketing scenarios. Finally, the joint inference of
the graph and the marginal benefits can help a central planner who wishes to design intervention
mechanisms achieve specific planning objectives. One such objective could be the maximization of
the total utilities of all players, which can be done by adjusting, according to the network topology,
the marginal benefits via incentivization [13]. Another objective could be the reduction of inequality
between the players in terms of their payoffs, which can be done by adjusting network topology via
encouraging the formation of certain new relationships.

There remain many interesting directions to explore. For instance, it would be essential to study
graph inference given partial or incomplete observations of the players’ actions, especially in the
case where it is costly to observe the actions of all the network players. It would also be interesting
to consider a setting where the underlying relationships between the players may evolve over time,
which can be modeled by dynamic graph topologies. Finally, the inference framework may need to
be adapted accordingly for network games of different payoff functions. We leave these studies as
future work.
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