Monday 21st May 2012 – 15:45 to 16:45

Speaker(s): Dejan Veluscek (ETHZ)

We will give a quick overview of the semigroup perspective on splitting schemes for S(P)DEs which present a robust, “easy to implement” numerical method for calculating the expected value of a certain payoff of a stochastic process driven by a S(P)DE. Having a high numerical order of convergence enables us to replace the Monte Carlo integration technique by alternative, faster techniques. The numerical order of splitting schemes for S(P)DEs is bounded by 2. The technique of combining several splittings using linear combinations which kills some additional terms in the error expansion and thus raises the order of the numerical method is called the extrapolation. In the presentation we will focus on a special extrapolation of the Lie-Trotter splitting: the symmetrically weighted sequential splitting, and its subsequent extrapolations. Using the semigroup technique their convergence will be investigated. At the end several applications to the S(P)DEs will be given.

Stochastic Analysis Seminar Series